
LA-UR-13-21884
Approved for public release; distribution is unlimited.

Title: Portable Data-Parallel Visualization and Analysis Operators

Author(s): Sewell, Christopher Meyer

Intended for: GPU Technology Conference, 2013-03-20 (San Jose, California, United
States)

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National
Security, LLC for the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.
By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to
publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.
Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the
U.S. Departmentof Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish;
as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Abstract for “Portable Data-Parallel Visualization and Analysis Operators”

This presentation describes the overall goal of PISTON and PINION (to
provide high parallel performance on current and next-generation
supercomputers using portable, data-parallel code), and summarizes
the work on these projects to date. It is intended for an audience at
NVIDIA’s GPU Technology Conference, and thus has an emphasis on
how it uses Thrust to write code that obtains good parallel performance
when compiled to different backends, including CUDA.

LA-UR-13-21083

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Portable Data-Parallel Visualization and Analysis Operators

Chris Sewell, Li-Ta Lo, and James Ahrens
Los Alamos National Laboratory

LA-UR-12-26127

file:///Users/cvc/Library/Caches/TemporaryItems/Outlook%20Temp/paraview.mp4
file:///Users/cvc/Library/Caches/TemporaryItems/Outlook%20Temp//localhost/Users/csewell/PISTONPresentation/globe.mp4

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Overview

� Goal: Portability and performance for visualization and
analysis operators on current and next-generation
supercomputers

� Main idea: Write operators using only data-parallel
primitives (scan, reduce, etc.)

� Requires architecture-specific optimizations for only for
the small set of primitives

� PISTON is built on top of NVIDIA’s Thrust Library

LA-UR-12-26127

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Motivation

Ɣ Current production visualization software does not take
full advantage of acceleration hardware and/or multi-
core architecture

Ɣ Research on accelerating visualization operations is
mostly hardware-specific; few were integrated in
visualization software

Ɣ Standards such as OpenCL may allow program to run
cross-platform, but usually still requires many
architecture specific optimizations to run well

LA-UR-12-26127

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

The Data Parallel Programming Model

Ɣ Data parallelism: independent
processors performs the same
task on different pieces of data

Ɣ A seminal work: Guy Blelloch’s
“Vector Models for Data
Parallel Computing”)

Ɣ Due to the massive data sizes
we expect to be simulating we
expect data parallelism to be a
good way to exploit parallelism
on current and next generation
architectures

LA-UR-12-26127

Example data-parallel operations

Challenge: Write operators in terms of these primitives only
Reward: Efficient, portable code

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

NVIDIA’s Thrust Library

Ɣ Thrust is an open-source C++ template
library developed by NVIDIA

Ɣ It allows the user to write CUDA programs
using an STL-like interface, without having
to know CUDA-specific syntax or functions

Ɣ In addition to CUDA, it has backends for
OpenMP and Intel TBB, and can be
extended to support additional backends

Ɣ It implements many data-parallel primitives,
with user-defined functors

Ɣ It provides thrust::host_vector and
thrust::device_vector, simplifying memory
management and data transfer between
the host and device

LA-UR-12-26127

Sample Thrust code to compute vector norm

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

How PISTON/PINION Leverage Thrust

Ɣ Thrust provides:

Ɣ An STL-like interface for memory management (host/device vectors) and data-parallel
algorithms

Ɣ Backend implementations of the data-parallel algorithms for CUDA, as well as slightly
less-developed implementations for OpenMP and TBB

Ɣ PISTON/PINION intend to provide:

Ɣ A library of visualization and analysis operators implemented using Thrust

Ɣ A data model simulation meshes (e.g., VTK structured grids, unstructured grids, AMR)

Ɣ Simulation operators (e.g., advection, interface reconstruction, etc.)

Ɣ PISTON/PINION intend to enhance:

Ɣ Non-CUDA backends (e.g., OpenCL prototype, optimize OpenMP for Xeon Phi, etc.)

Ɣ Interface to support distributed memory operations

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Videos of PISTON in Action

LA-UR-12-26127

file:///Users/cvc/Library/Caches/TemporaryItems/Outlook%20Temp/pistonLarge.mp4
file:///Users/cvc/Library/Caches/TemporaryItems/Outlook%20Temp/pistonOMP.mp4
file:///Users/cvc/Library/Caches/TemporaryItems/Outlook%20Temp/pistonCUDA.mp4

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Isosurface with Marching Cube – the Naive Way

Ɣ Classify all cells by transform

Ɣ Use copy_if to compact valid cells.

Ɣ For each valid cell, generate same
number of geometries with flags.

Ɣ Use copy_if to do stream compaction
on vertices.

Ɣ This approach is too slow, more than
50% of time was spent moving huge
amount of data in global memory.

Ɣ Can we avoid calling copy_if and
eliminate global memory movement?

LA-UR-12-26127

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Isosurface with Marching Cube – Optimization

Ɣ Inspired by HistoPyramid

Ɣ The filter is essentially a mapping
from input cell id to output vertex id

Ɣ Is there a “reverse” mapping?

Ɣ If there is a reverse mapping, the
filter can be very “lazy”

Ɣ Given an output vertex id, we only
apply operations on the cell that
would generate the vertex

Ɣ Actually for a range of output vertex
ids

0 1 2 5 4 3 6

0

1
2 3 4

5
6

7

8
9

LA-UR-12-26127

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Isosurface with Marching Cubes Algorithm

LA-UR-12-26127

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Variations on Isosurface: Cut Surfaces and Threshold

Ɣ Cut surface

Ɣ Two scalar fields, one for generating
geometry (cut surface) the other for scalar
interpolation

Ɣ Less than 10 LOC change, negligible
performance impact to isosurface

Ɣ One 1D interpolation per triangle vertex

Ɣ Threshold

Ɣ Classify cells, this time based on whether
value at each vertex falls within threshold
range, then stream compact valid cells
and generate geometry for valid cells

Ɣ Additional pass of cell classification and
stream compaction to remove interior cells

LA-UR-12-26127

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Additional Operators

Current prototypes

Ɣ Glyphs

Ɣ Halo finder for cosmology
simulations

Ɣ “Boid” simulation (flocking
birds)

LA-UR-12-26127

Data Structures
 Graphs: Neighbor reducing, distributing excess across edges
 Trees: Leaffix and rootfix operations, tree manipulations
 Multidimensional arrays
Computational Geometry
 Generalized binary search
 k-D tree
 Closest pair
 Quickhull
 Merge Hull

Graph Algorithms
 Minimum spanning tree
 Maximum flow
 Maximal independent set
Numerical Algorithms
 Matrix-vector multiplication
 Linear-systems solver
 Simplex
 Outer product
 Sparse-matrix multiplication

Blelloch’s “Vector Models for Data-Parallel Computing”

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

PISTON Performance

LA-UR-12-26127

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Integration with VTK and ParaView

Ɣ Filters that use PISTON data types and algorithms integrated into VTK and ParaView

Ɣ Utility filters interconvert between standard VTK data format and PISTON data format
(thrust device vectors)

Ɣ Supports interop for on-card rendering

LA-UR-12-26127

Developed with Dave DeMarle and Utkarsh Ayachit at Kitware

file:///Users/cvc/Library/Caches/TemporaryItems/Outlook%20Temp/paraview.mp4

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Extending PISTON’s Portability: Architectures

Ɣ Prototype OpenCL backend

Ɣ Successfully implemented isosurface and cut plane operators in
OpenCL with code almost identical to that used for the Thrust-based
CUDA and OpenMP backends

Ɣ With interop on AMD FirePro V7800, we can run at about 6 fps for
256^3 data set (2 fps without interop)

Ɣ Renderer

Ɣ Allows generation of images on systems without OpenGL

Ɣ Rasterizing and ray-casting versions (using K-D Tree)

Ɣ Inter-node parallelism

Ɣ VTK Integration

– Domain partitioned by VTK’s MPI libraries

– Each node uses PISTON filters to compute results for its portion
of domain

– Results combined by VTK’s compositors

Ɣ Distributed implementations of Thrust primitives using MPI (in progress)

LA-UR-12-26127

file:///Users/cvc/Library/Caches/TemporaryItems/Outlook%20Temp/pistonOCL.mp4
file:///Users/cvc/Library/Caches/TemporaryItems/Outlook%20Temp/mpipiston.mp4

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Extending PISTON’s Portability: Data Types

Ɣ Curvilinear coordinates

Ɣ Multiple layers of coordinate transformations

Ɣ Due to kernel fusion, very little performance
impact

Ɣ Unstructured / AMR data

Ɣ Tetrahedralize uniform grid or unstructured grid
(e.g., AMR mesh)

Ɣ Generate isosurface geometry based on look-up
table for tetrahedral cells

Ɣ Next step: Develop PISTON operator to
tetrahedralize grids, and/or to compute
isosurface directly on AMR grid

LA-UR-12-26127

file:///Users/cvc/Library/Caches/TemporaryItems/Outlook%20Temp/amr.mp4
file:///Users/cvc/Library/Caches/TemporaryItems/Outlook%20Temp//localhost/localhost/Users/csewell/PISTONPresentation/globe.mp4

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

PISTON In-Situ

Ɣ VPIC (Vector Particle in Cell) Kinetic Plasma Simulation Code

Ɣ Implemented first version of an in-situ adapter based on
Paraview CoProcessing Library (Catalyst)

Ɣ Three pipelines: vtkDataSetMapper, vtkContourFilter,
vtkPistonContour

Ɣ CoGL

Ɣ Stand-alone meso-scale simulation code developed as part of
the Exascale Co-Design Center for Materials in Extreme
Environments

Ɣ Studies pattern formation in ferroelastic materials using the
Ginzburg–Landau approach

Ɣ Models cubic-to-tetragonal transitions under dynamic strain
loading

Ɣ Simulation code and in-situ viz implemented using PISTON

Output of vtkDataSetMapper and vtkPistonContour
filters on Hhydro charge density at one timestep of
VPIC simulation

LA-UR-12-26127

Strains in x,y,z (above); PISTON in-
situ visualization (right)

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

PISTON’s New Companion Project: PINION

Ɣ A portable, data-parallel software framework for physics simulations

Ɣ Data structures that allow scientists to program in a way that maps easily to the problem domain rather than
dealing directly with 1D host/device vectors

Ɣ Operators that provide data-parallel implementations of analysis and computational functions often used in
physics simulations

Ɣ Backends that optimize implementations of data parallel primitives for one or two emerging supercomputer
hardware architectures

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

PISTON Open-Source Release

Ɣ Open-source release

Ɣ Stable tarball: http://viz.lanl.gov/projects/PISTON.html

Ɣ Current repository: https://github.com/losalamos/PISTON

LA-UR-12-26127

http://viz.lanl.gov/projects/PISTON.html
https://github.com/losalamos/PISTON

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Acknowledgments

Ɣ The SciDAC Institute of Scalable Data Management, Analysis and
Visualization (SDAV), funded by the DOE Office of Science through the
Office of Advanced Scientific Computing Research.

Ɣ NNSA ASC CCSE Program

Ɣ The Exascale Co-Design Center for Materials in Extreme Environments,
funded by the DOE Office of Advanced Scientific Computing Research
(ASCR)

Ɣ Los Alamos Laboratory Directed Research and Development Program

LA-UR-12-26127

	Abstract for “Portable Data-Parallel Visualization and Analysis Operators”
	Portable Data-Parallel Visualization and Analysis Operators
	Overview
	Motivation
	The Data Parallel Programming Model
	NVIDIA’s Thrust Library
	How PISTON/PINION Leverage Thrust
	Videos of PISTON in Action
	Isosurface with Marching Cube – the Naive Way
	Isosurface with Marching Cube – Optimization
	Isosurface with Marching Cubes Algorithm
	Variations on Isosurface: Cut Surfaces and Threshold
	Additional Operators
	PISTON Performance
	Integration with VTK and ParaView
	Extending PISTON’s Portability: Architectures
	Extending PISTON’s Portability: Data Types
	PISTON In-Situ
	PISTON’s New Companion Project: PINION
	PISTON Open-Source Release
	Acknowledgments

